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The heat source density in a laser ruby is calculated by numerical
integration of the pumping and absorption spectra. The heat source
density can be represented approximately by the formula q(r) =
= q, + 9,10 (E1/ry), which can be used to determine the temperature
distribution in the crystal for typical pumping and cooling conditions.

We consider a long ruby crystal of round section
with a constant absorption coefficient k(A') throughout
its volume and a smooth, nonmat surface on which
isotropic pumping radiation falls. The heat source den-
sity (specific power of the sources) in the crystal can
be calculated from the formula
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In formula (1) E (A') is the illuminance of the crystal
surface, which depends on the selected pumping lamp;
F is a factor which takes into account the distribution
of pumping light in the crystal; 75 is the quantum yield
of luminescence and A, = 0.69u is the average wave-
length of the luminescent radiation. Formula (1)
ignores secondary absorption of the luminescent
emission, the change in the value of k(A') due to de-
pletion of the ground level, and the change in quantum
yield due to heating.
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Fig. 1. 1) Spectrum E(A") (rel. units)
of IFP-800 pumping lamp; 2) absorp-
tion spectrum k (A') (cm™?!) of ruby erys-

tal: 3) quantum yield of luminescence
n {A') (dimensionless units) (A' in y).
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The value of g(r) is determined from formula (1)
by numerical integration with a step AA' = 0. 01u and
the following initial data (Fig. 1}: the spectrum E
(A} of a IFP-800 xenon lamp recorded in pulsed opera-
tion with a pumping energy of 200 J and voltage 800 V:
the absorption spectrum obtained for a ruby crystal
with chromium concentration 0.05% on a SF-10 spec-
trophoutoineter after averaging over the two polariza-
tions: factor F as a function of the parameters Kry
and 1Ty taken from Anan'ev and Korolev's paper [1]

on the distribution of monochromatic pumping radia-
tion in laser crystals; and, finally the quantum yield

1 (A'), chosen to correspond with Bukke and Morgen-—
shtern's measurements [2], the curve given in [2]
being continued into the 0.58- to 0.65 u region, as
shown in Fig. 1 (curve 3). The chosen diameter of the
crystal in the calculations was 2r; = 0.65 cm. We as-
sumed that filters are used to isolate the region from
Ay =0.3 to Ay = 0.7p in the pumping spectrum and that
the rest of the spectrum is not implicated in the heating
of the crystal.

qu
SEEEN
w \)\
-70_ 14 Z \\
0 3

N
v ™~

0 4z a4 a6 08 t/1,

Fig. 2. 1) Density of energy spe-
cific heat energy Q(r) (J/cm®) re-
leased during one pumping pulse
in a ruby of diameter 6.5 mm; 2)
absorbed energy of pumping radi-
ation U (r) (J/em®); 3) approxi-
mate representation of specific
energy of sources by means of
function Q(r) = Q + Qalgér/
/To) with Q; = 12.5 J/cm® and

Q= 14 J/cm?, £ =3.2.

The results of calculation of g(r) are given in Fig. 2
(curve 1). The curve is normalized so that the total
amount of heat Q released in the crystal during one
pumping pulse is 40 J, and the density of the heat
released during a pulse Q(r) is plotted on the y axis.
The determined distribution of source density is far
from homogeneous. We also calculated the distribution
of absorbed pumping power

p(r) = \ EQOF @, ko nk()dy (2)

and the energy absorbed during a pumping pulse U(r)
(curve 2, Fig. 2). We can then evaluate the energy
vield of luminescence 5' from the absorbed energy:

= .!r\': [ptry —q{nldr \ / ,[’\c plrydr 1 (8)
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In this case it is ' = 0.19.
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The determined heat source density can be repre-
sented by the approximate formula

q(r)=q1+q210(§r/ro)- (4)

Figure 2 (curve 3) shows a function of the form (4) —
the density of the heat released during a pulse with
Q; =12.5, Q, =14 J/em® and ¢ = 3.2; this represents
the value of Q(r) to an accuracy of +10%. The selec-
tion of an approximate formula in the form (4) in con-
junction with a Bessel function facilitates the evaluation
of the integrals in the calculation of the temperature
distribution.

Below we calculate the temperature distribution in
a homogeneous and isotropic laser crystal in the case
of periodic pulsed pumping with heat source density of
the form (4). We assume that the ends of the crystal
are thermally insulated and on the cylindrical surface
boundary conditions of the first or third kind with a
constant heat transfer coefficient are satisfied. We
assume that at the instant of application of the first
pumping pulse the crystal temperature T(r, 0) is equal
to the temperature of the cooling medium Ty, i.e.,
@(r,0) =T (r, 0) — Ty = 0. It is known that this bound-
ary value problem can be solved for any g (r,t) by
Hankel's method of finite integral transforms {3]. For
this purpose the periodic function of time g (r,t) must
be put in the form of a Fourier series. It is much more
convenient, however, to express the source density by
a simple piecewise~-continuous function assigned to an
arbitrary pumping cycle 0 < 7 < t,. Then the ‘problem
is divided into a series of stages corresponding to the
first, second, etc., cycles of operation. The tempera-
ture at the end of the (m — 1)th ¢ycle is the initial
condition for the next, m-th cycle. The successive
solution of these problems leads to the following for-
mula for the temperature distribution during the m-~th
cycle of operation:

8, (r, 7) = % E L7 1 (par) exp (— ap? 1) x

n=1
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In formula (5) g (p,, 1) ='\. rq (r,7) I, (p, r) dr is the
0

Hankel image of the source density, pp are the roots

To

of the characteristic equation and L, = \ ri2(p,r)dr.
1

The temperature distribution in the following problems
is calculated by means of formula (5).

Periodic pumping by rectangular and instantaneous
pulses. During one cycle of operation the source den-
sity has value (4) in the interval 0 < 7 < tg; to =tp +
1tg. For heat transfer on the surface in accordance
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with Newton's law the temperature distribution in the
course of the m~th cycle of operation is equal on heat-
ing to

O ulr, 7) =—‘ ; Addo (Ba1) {g— E~_"—g7 [10 ®—
-L, (E)] } [l = GuuBdexp(—afin]  (6)

and on cooling to
Bo(r, T = S—‘ Anlo (B21) {;— t e [Io@) —
- é I, (a)] } o () €xp (— 2 B20). (7)

In formulas (6) and (7) B, are the roots of the charac-
teristic equation 8r1;(Bry)— Bil; (Bry) = 0; Ap
are coefficients tabulated in [4, 5],

An = 2BiABi* + B2 ) 1, (B4 ro)-
The values of ¢, (8y) and @m(By) are
Pmu () =1— [exp(—a ﬁ'-: ty)—exp(—a ﬂf: t X

y l—exp[—(m—Na#i]
o 1 —exp(—apBit)

(8)

oY .
I —exp(—ma8i

1 —exp(—afit)

G0 (ﬂn) = ' I — exp (_aﬁi 1;;)' (9)
and for the established periodic temperature conditions
are converted to the limiting expressions ¢« (,) =
=lin @4 (Ba)and @xo(B,) = lim q.0(B.). If the heat

transfer coefficient is very high and the boundary con-
ditions can be written in the form ®(ry,t) = 0, then
heating and cooling during the m-th cycle of operation
conform to the law

2 {1 Tola, ) %

(-)/n (f, 1) =
" ) ~ry ngl (l,,[.(lnro)
o DI S N T . p(— aq?
X [ (l','; T (l;‘: T g-_’",r"_; [ (:)] | P n (un) e"p( ﬂ(ln T)l'
0ttt (10)
Qalr. ) =
e LN
Ay m=a, (e, |l =gt
% P () EXp(—aait), 0< - 4, (11)

where oy, are the roots of the characteristic equation
Ip{arg) = 0, Putting m =1 and ty — = in formulas
(6)~(11), we obtain expressions for a single rectangu-
lar pumping pulse. Formulas (6) and (10) withm =1
and 7=t (0 < t < «) also describe the establishment
of steady-state heat conditions in the case of continuous
and constant pumping of form (4).

In the case where the duration of the pumping pulses
can be neglected we convert in formulas (7) and (11)
to the limit [qy + qLy(§r/y)lt, = Qg + QLo(Er/ry)
where tp — 0. For a finite heat transfer coefficient
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instantaneous pumping pulses produce a temperature
distribution

Q.Bn

o 0= % A lo s %
s 0= == N Ay (Bar) R

n=1
fy (E)]

and with the zero boundary conaition @(ry t)=0 we have

[!u ®—

I —exp(—mafit)
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em (rr T) =
-2 ) fotey 1) [Ql L Qo lo(g)] %
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I —ex maut
X € P( (.L u) exp (——aa‘;"—r). (13)

1 —exp(—ada? tu)

When 7= t, formulas (12) and (13) give the temperature
distribution in the crystal before the next instantaneous
pumping pulse.

Bell-shaped pulses. In the case where no special
measures are taken to shape the pumping pulses their
shape may be far from rectangular and can be de-
scribed fairly accurately by means of one, two or more
time exponents. We consider successive identical

- pumping pulses with heat source density assigned to an
arbitrary cycle of operation 0 < 7 < t;, by the function

q(f, 17) = 2 [qls +q25[0 (gs f/l’o)] exp(""ks ‘C)' (14)

s=1
A function of the form (14) can be used to take into
consideration the change in the pumping spectrum dur-
ing the pulse. Substituting the value of (14) in formula
(5) we obtain an expression for the temperature dis-
tribution during the m-th cycle of operation with a
finite heat transfer coefficient

6 (r,1) =

S =
a Ay (B, 1)
- ZE k—aﬁ"

___és{ Il(ES)]i[¢sm(§n)exp(_a_ﬁg‘£)——eXp(—ksT)] (15)
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and with zero boundary condition
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B, (r, 1) =

X [, (01,) €xp (— @ o2t) —exp (— &y 7). (186)

The values of gy, are

l —exp[— (m— 1)ap:i.]
1 —exp(— ap/'—; t.)
k).

Werm (pn) =1+

x [exp (— ap2 ) —exp(— a7)

To investigate the steady-state periodic temperature
conditions we merely convert to the limit where m —
— o ip~formulas (15)—(17). Putting m = 1 and 7 =
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=1 (0 < t < =) we obtain formulas for a case of a
single pumping pulse of the form (14).

Finally, if the discharge circuit of the pulsed lamp
has high inductance, the time dependence of the dis~
charge current can be given [6] by the function q (1) =
= qok 7 exp (—k7). Let the source density q(ry, 7) in
the interval 0 < 7 < t; have the value

S
q(f’, T) = 2 [qls + q?s[() (g I’,/fo)] ks“exp(“— ks T)'

s=1

(18)

Then the temperature distribution during the m~th cy-
cle is calculated from the formula

S EY
An[ (ﬁn l') { [#2 ﬁ,zl
8,,, r,T Zi V! L 25 / o
o= N T e [
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Bi | Mo n TR
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where / -
YNsin (?n) = b —:Sa BZ -+
1 —exp(—(m— 1)agit] ke
exp (a ﬁn C)_ l ks_aﬁz(

—expllafy— k)t —kd expilag] — k) tcl] . (20)

With the zero boundary condition the corresponding
formula is obtained after replacement of the time fac-
tors in (16) by the values

Hem ((l,,) ‘-‘XP (—— a (1’.';17) h

g)exy)(~ k). (21)

) fe,
— \Ies T - [—pe
It is obvious that in the case where the source density
can be regarded as homogeneous, formulas (6), (7),
(10)—(13), (15), (16), and (19) become simpler,

since they lose the terms with q; which are zero.

NOTATION

Ty is the radius of crystal; r is the variable radius
(coordinate); t is the time; 7 is the time during con-
sidered process or cycle of operation; q (r, 7) is the
density (specific power) of heat sources; Q (r) is the
specific energy (during pumping pulse) of heat sources;
A' is the wavelength of pumping radiation; k(\') is the
absorption coefficient; F is the Anan'ev~Korolev fac-
tor, which takes into account the distribution of the
monochromatic pumping radiation in the absorbing cry-
stal; n (A") is the quantum yield of luminescence;
p (r) is the absorbed power of pumping radiation;
U (r) is the absorbed pumping energy; ¢ is the empiri-
cal parameter in heat source distribution function;
T (r,t) is the crystal temperature; T, is the tempera~
ture of cooling medium; T(r,t) — T = ©(r, t) is the ex-
cess of crystal temperature over ambient temperature;
t, is the duration of rectangular pumping pulses; tg
is the time of cooling between rectangular pumping pul-
ses; t, is the duration of cycle of operation (tp = tp 4
+ tg): A is the thermal conductivity; @ is the thermal
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diffusivity; «is the heat transfer coefficient; Bi =

= @ ro/A is the Biot number; py, Ay, ap are the roots
of characteristic equations; A, is the tabulated co-
efficients in problem of cooling of cylinder; Iy, Ij

are the Bessel functions of zero and first order; kg is
the index of time decay of heat sources; ¢, ¢, n are the
calculated coefficients in formulas for determining
temperature distributions. -
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